首页 > 科技 > 面试必备--TCP的三次握手与四次挥手

面试必备--TCP的三次握手与四次挥手

TCP协议

传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP通过检验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现可靠性传输

报文格式

源端口号:表示发送端端口号,字段长16位

目标端口号:表示接收端端口号,字段长度16位

序列号:字段长32位。序列号是指发送数据的位置。每发送一次数据,就累加一次该数据字节数的大小(用来标记数据段的顺序)。序列号不会从0或1开始,而是在建立连接时由计算机生成的随机数作为其初始值,通过SYN包传给接收端主机。然后再将每转发过去的字节数累加到初始值上表示数据的位置。此外,在建立连接和断开连接时发送的SYN包和FIN包虽然并不携带数据,但是也会作为一个字节增加对应的序列号

确认应答号:字段长度32位。是指下一次应该收到的数据的序列号。 实际上,它是指已收到确认应答号减一为止的数据。发送端收到这个确认应答以后可以认为在这个序号以前的数据都已经被正常接收。因此当前报文段最后一个字节的编号+1即为确认应答号

数据偏移:该字段表示TCP所传输的数据部分应该从TCP包的哪个位开始计算,当然也可以把它看作TCP首部的长度。该字段长4位,单位为4字节。(比如该值为4就表示TCP所传输的数据从16个字节的地方开始);如果不包括选项字段的话,此数据偏移字段可以设置为5。反之,如果该字段的值为5,那说明从TCP包的最一开始到20字节为止都是TCP首部,余下的部分为TCP数据。

保留:该字段主要是为了以后扩展时使用,其长度为4位,一般设置为0。

窗口大小:该字段长为16位。用于通知从相同TCP首部的确认应答号所指位置开始能够接收的数据大小TCP不允许发送超过此处所示大小的数据。不过,如果窗口为0,则表示可以发送窗口探测,以了解最新的窗口大小。

控制位

字段长为8位,每一位从左至右分别为CWR、ECE、URG、ACK、 PSH、RST、SYN、FIN。这些控制标志也叫做控制位。

  • CWR(Congestion Window Reduced:拥塞窗口减少): CWR标志与后面的ECE标志都用于IP首部ECN字段。ECE标志为1时,则通知对方已将拥塞窗口缩小。
  • ECE:表示ECNEcho。置为1会通知通信对方,从对方到这边的网络有拥塞。在收到数据包的IP首部ECN为1时将TCP首部中的ECE设置为1。

URG: 标识紧急指针是否有效

ACK: 标识确认序号是否有效

PSH: 用来提示接收端应用程序立刻将数据从tcp缓冲区读走

RST: 要求重新建立连接. 我们把含有RST标识的报文称为复位报文段

SYN: 请求建立连接. 我们把含有SYN标识的报文称为同步报文段

FIN: 通知对端, 本端即将关闭. 我们把含有FIN标识的报文称为结束报文段


校验和

TCP和UDP一样在计算校验和的时候使用TCP伪首部。为了让其全长为16位的整数倍,需要在数据部分的最后填充0。首先将TCP校验和字段设置为0。然后以16位为单位进行1的补码和计算,再将它们总和的1的补码和放入校验和字段。 接收端在收到TCP数据段以后,从IP首部获取IP地址信息构造TCP 伪首部,再进行校验和计算。由于校验和字段里保存着除本字段以外其 他部分的和的补码值,因此如果计算校验和字段在内的所有数据的16位和以后,得出的结果是“16位全部为1(1的补码中该值为0(负数0)、 二进制中为1111111111111111,十六进制中为FFFF,十进制中则为正整 数65535。) ”说明所收到的数据是正确的

TCP三次握手

TCP通过三次握手来建立可靠的连接。

第一次握手:

客户端向服务端发送连接请求报文段。该报文段的头部中SYN=1ACK=0,同时选择一个初始序号seq=x。请求发送后,客户端便进入SYN-SENT状态

第二次握手:

服务端收到连接请求报文段后,如果同意连接,会发送一个应答:SYN=1,ACK=1,seq=y,ack=x+1。发送完应答后服务端进入SYN-RCVD状态

第三次握手:

客户端收到服务端连接同意的应答后,还会向服务端发送一个确认报文段,表示:服务端发来的连接同意应答已经成功收到。该报文段的头部为:ACK=1,seq=x+1,ack=y+1。该报文发送完毕后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手

为什么是三次握手,而不是两次或四次?

为什么不是两次握手:是为了防止已失效的连接请求报文段突然又传送到了服务端,造成服务端资源的浪费。

在一次TCP连接中,客户端A向服务端B发送连接请求SYN报文段,假如这个报文段没有及时被服务端B接收,而是滞留在网络的某处,于是客户端A超时重传,再次发送请求连接并且顺利与服务端B建立了连接,交换数据后断开连接。滞留在网络中的某处的陈旧报文就变成了失效的连接请求报文。

但如果这个失效的请求SYN报文段,现在又突然传送到了服务端B处,设想这时是使用两次握手而不是三次握手,服务端B就以为客户端A现在建立请求连接,于是服务端B发出确认,新的连接就建立了,服务端B分配资源,等待客户端A传送数据,但客户端A并没有想要建立TCP连接,不会理会服务端B发送的应答,也不会向服务端B传送数据,于是服务端B就白白等待,空耗资源。

使用三次握手可以避免这个情况。服务端B收到客户端A的失效的陈旧SYN报文段,向客户端A发送SYN报文段,选择自己的序号seq=y,确认收到客户端A的SYN报文段,确认号ack=x+1。第三次握手客户端A收到B的SYN报文段后,从确认号就可得知不应理睬这个SYN报文段(因为A现在并没有发送seq=x的报文段)。这时,客户端A会发送复位报文段,这个复位报文段中,RST=1,ACK=1,确认号ack=y+1。服务端B收到A的复位报文,就知道不建立TCP连接,不会分配资源等待A发送数据。

TCP四次挥手

TCP连接是双向的,在四次挥手中,前两次挥手用于断开一个方向的连接,后两次挥手用于断开另一方向的连接

第一次挥手

客户端数据发送完成,则它向服务端发送连接释放请求。该请求只有报文头,头中携带的主要参数为:FIN=1,seq=u。此时,客户端将进入FIN-WAIT-1状态。TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

第二次挥手

服务器收到客户端连接释放报文,通知相应的高层应用进程,告诉它客户端向服务器这个方向的连接已经释放了。此时服务端进入了CLOSE-WAIT(关闭等待)状态,并向客户端发出连接释放的应答,其报文头包含:ACK=1,ack=u+1,seq=v。

客户端收到该应答后,进入FIN-WAIT-2状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

第二次挥手完成后,客户端到服务端方向的连接已经释放,服务端不会再接收客户端的数据,客户端也没有数据要发送了。但服务端到客户端方向的连接仍然存在,服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

第三次挥手

服务端将最后的数据发送完毕后,就向客户端发送连接释放报文,其报文头包含:FIN=1,ack=u+1,由于在CLOS-WAIT状态,服务端很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

第四次挥手

客户端收到服务器的连接释放报文后,向服务端发出确认应答,报文头:ACK=1,ack=w+1,seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。该状态会持续2MSL(最长报文段寿命)时间,这个期间TCP连接还未释放,若该时间段内没有服务端的重发请求的话,客户端就进入CLOSED状态,服务端只要收到了客户端发出的确认,立即进入CLOSED状态。就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

为什么客户端最后还要等待2MSL?

第一:为了保证服务端能收到客户端的确认应答。若客户端发完确认应答后直接进入CLOSED状态,那么如果该应答丢失,服务端等待超时后就会重新发送连接释放请求,但此时客户端已经关闭了,不会作出任何响应,因此服务端就无法正常关闭。

第二:防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

为什么是四次挥手?

关闭连接时,服务器收到客户端的FIN报文时,仅仅表示客户端不再发送数据了但是还能接收数据,并且服务端也未必全部数据都发送给对方了,所以服务端可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,服务端的ACK和FIN一般都会分开发送,从而导致多了一次

本文来自投稿,不代表本人立场,如若转载,请注明出处:http://www.sosokankan.com/article/1484480.html

setTimeout(function () { fetch('http://www.sosokankan.com/stat/article.html?articleId=' + MIP.getData('articleId')) .then(function () { }) }, 3 * 1000)